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Abstract—The innovative techniques of TCP Vegas have been the sub-  Since TCP Vegas is essentially a combination of several dif-
ject of much debate in recent years. Several studies have reported that TCP ferent technlques' each evoklng considerable Controversy on its

Vegas provides better performance than TCP Reno. However, the ques- h of . K eith trated di .
tion which of the new techniques are responsible for the impressive per- own, much of previous work elther concentrated on discussing

formance gains remains unanswered so far. This paper presents a detailed@nd evaluating a particular mechanism in isolation or tried to
performance evaluation of TCP Vegas. By decomposing TCP Vegas into the characterize the overall behavior of TCP Vegas. The question,

various novel mechanisms proposed and assessing the effect of each oftheSﬁowever which of the techniques incorporated in TCP Vegas
mechanisms on performance, we show that the reported performance gains !

are achieved primarily by TCP Vegas's new techniques for slow-start and @€ responsible for the performance gains reported in [6][8][1],
congestion recovery. TCP Vegas's innovative congestion avoidance mecharemains unanswered so far. To answer this question, we decom-
nism is shown to have only a minor influence on throughput. Furthermore, pose TCP Vegas into its individual algorithms and assess the

we find that the congestion avoidance mechanism exhibits fairness prob- frect of h of th | ith f
lems even if all competing connections operate with the same round trip eriect of each of these algorithms on perrormance.

time. The paper is organized as follows: Section Il presents the var-
Keywords— TCP Vegas, Congestion control, Transport protocols. ious enhancements of TCP Vegas. Related work is reviewed in
Section Ill. Section IV describes the simulation environment

used for our experiments. Section V provides the basis for our
detailed evaluation by quantifying the speedup achieved by TCP
TCP Vegas is a new design for TCP that was introducdgas (over TCP Reno). The techniques incorporated by TCP
by Brakmo et al. [6][8]. TCP Vegas includes a modified revegas are listed in Section VI, and some problems in their im-
transmission strategy (compared to TCP Reno) that is basedptgmentation are discussed in Section VII. Section VIII presents
fine-grained measurements of the round-trip time (RTT) as wélie detailed results on how the various algorithms affect overall
as new mechanisms for congestion detection during slow-stetformance. Finally, Section IX discusses the fairness of TCP
and congestion avoidance. The innovative techniques propo¥egas’s congestion avoidance mechanism.
in [6][8], as well as the impressive performance gains (compared
to TCP Reno) reported [6][1], have been the subject of much de- Il. TCP VEGAS
bate in recent years. This paper takes a fresh look at the desigAccording to the published papers that describe TCP Ve-
of TCP Vegas and attempts to shed light on the advantages (gad [6][8], TCP Vegas differs from TCP Reno as follows:
disadvantages) of the innovations introduced by TCP Vegas. New retransmission mechanism:TCP Vegas introduces three
TCP Reno’s congestion detection and control mechanisgignges that affect TCP’s (fast) retransmission strategy. First,
use the loss of segments as a signal that there is congestiohGi Vegas measures the RTT for every segment sent. The mea-
the network [17]. TCP Reno has therefore no mechanism to gevements are based on fine-grained clock values. Using the
tect the incipient stages of congestion before losses occur &ing-grained RTT measurements, a timeout period for each seg-
hence cannot prevent such losses. Thus, TCP Remadsive ment is computed. When a duplicate acknowledgement (ACK)
as it needs to create losses to find the available bandwidth of iheeceived, TCP Vegas checks whether the timeout period has
connection. On the contrary, TCP Vegas's congestion detectiexpired. If so, the segment is retransmitte@econd, when a
mechanism iproactive that is, it tries to sense incipient congesnon-duplicate ACK that is the first or second after a fast retrans-
tion by observing changes in the throughput rate. Since TCP Vaission is received, TCP Vegas again checks for the expiration
gas infers the congestion window adjustment policy from suéfithe timer and may retransmit another segment. Third, in case
throughput measurements, it may be able to reduce the sendifignultiple segment loss and more than one fast retransmission,

I. INTRODUCTION

rate before the connection experiences losses. the congestion window is reduced only for the first fast retrans-
mission.
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throughput. The congestion window is increased only if thes@n of TCP Vegas, which includes only its congestion detection
two values are close, that is, if there is enough network capand window adjustment scheme, over a gigabit network. In the
ity so that the expected throughput can actually be achievedperiments, TCP Vegas achieves only half of the throughput of
The congestion window is reduced if the measured throughd@P Reno.

is considerably lower than the expected throughput; this condi-Such a restricted version of TCP Vegas is also evaluated by
tion is taken as a sign for incipient congestion. Bolliger et al. [5]; several variants of TCP are implemented as
Modified slow-start mechanism: A similar congestion detec- user-level protocols and evaluated in the Internet. TCP Vegas
tion mechanism is applied during slow-start to decide when ishown to cause fewer timeouts due to multiple segment loss
change to the congestion avoidance phase. To have valid coan TCP Reno. On the other hand, TCP Vegas suffers more
parisons of the expected and the actual throughput, the congesn-trigger” timeouts than TCP Reno. Non-trigger timeouts
tion window is allowed to grow only every other RTT. reflect missed opportunities to enter recovery. In this study, TCP

In [8], an additional algorithm is presented, which tries to invegas'’s throughput is slightly worse than TCP Reno’s.
fer available bandwidth during slow-start from ACK spacing. Danzig et al. [10] evaluate a pre-release version of TCP Vegas
However, this algorithm was marked experimental, and it waghich did not include Vegas’s new congestion avoidance mech-
not used in the evaluation of TCP Vegas. (Hence, we also efiism. Since the authors cannot reproduce the claims made
cluded it from our evaluation.) in [6], they conclude that it is indeed TCP Vegas's new con-

Both [6] and [8] report between 37 and 71% better throughpgéstion avoidance mechanism that is responsible for the perfor-
for TCP Vegas on the Internet, with one-fifth to one-half of thevance improvements noted in [6].
losses. Simulations confirm these measurements; they also shothe |ast three reports are contradictory; [2][5] may lead to the
that Vegas does not adversely affect TCP Reno’s throughput @@fhclusion that TCP Vegas's new behavior during congestion
that TCP Vegas is not less fair than TCP Reno. avoidance has a negative influence on throughput, whereas [10]
suggests that it has a positive influence. Unfortunately, research
showing throughput improvements for TCP Vegas has failed to

TCP Vegas's new techniques for congestion avoidance, thgftow which of TCP Vegas’s new algorithms is responsible to
effect on TCP performance, and TCP Vegas's behavior in tivaat degree for the reported speedups. This paper tries to ad-
presence of competing TCP Reno connections have been ingfess this issue based on simulations. Before turning to a de-
tigated by previous researchers. We now give a short overvigailed evaluation of the effects of individual mechanisms present
of this earlier work. in TCP Vegas, the following sections introduce the simulation

Ahn et al. [1] performed some live Internet experiments wittnvironment and present an initial performance evaluation of
TCP Vegas. They report 4—20% speedups for transfers to a TOPP Reno and TCP Vegas which validates the experimental
Reno receiver and 300% speedups for transfers to a TCP TakeIp.
receiver. For both scenarios, TCP Vegas is found to retransmit
fewer segments and to have lower RTT average and variance. IV. SIMULATION ENVIRONMENT
Experiments in a WAN emulator with varying degrees of either Thi tion d ibes the simulati . t dtoi
TCP Reno or TCP Vegas background traffic reveal that TCP Ve- IS SECLoN Cescribes e simuiation envirohment used o in-

: ) . . Vestigate the influence of the various new algorithms in TCP
gas achieves higher throughputs for high congestion, wher A
TCP Reno outperforms TCP Vegas in the case of low conges-
tion. A

With a fluid model and simulations, Mo et al. [21] show that "~
TCP Vegas, as opposed to TCP Reno, is not biased against coW¥e run our simulation ox-sim, a network simulator based
nections with long delays, and that TCP Vegas does not recedrethex-kernel [16]. In this environment, actuglkernel pro-

a fair share of bandwidth in the presence of a TCP Reno cdaeol implementations run on a simulated network. Our choice
nection. of x-sim is based on the following two observations: First, the

Hasegawa et al. [14] use an analytical model to derive thataluations in the original papers that describe TCP Vegas [6][8]
TCP Vegas's congestion avoidance mechanism is more stadvle also performed witkesim. This fact gives us confidence that
than the one of TCP Reno, that is, the congestion window obar results are not biased by using a different implementation of
TCP Vegas connection may converge to a fixed value. HoweveEP Vegas. Second, we want to evaluate an implementation of
they also find that the mechanism sometimes fails to achiel€P Vegas based on production code. This requirement is ful-
fairness among several connections with different round-trilied by x-sim since its implementation of TCP Reno is directly
times. derived from the BSD implementation of TCP Reno.

With the help of a WAN emulator simulating a satellite link, We made two changes to the original implementations of TCP
Zhang et al. [22] study the performance of various TCP veReno and TCP Vegas provided in tkéernel. Both of these
sions over long-delay links. TCP Vegas achieves only half tkbanges were proposed in a paper from the inventors of TCP
throughput of TCP Tahoe or TCP Reno. However, it retransmi¥egas [7] and have also been applied to the current TCP Reno
much less than other TCP variants. releases of FreeBSD and NetBSD. The changes include a modi-

Ahn et al. [2] introduce a new technique to speedup simuliéeation to the algorithm for computing the retransmission time-
tion of high-speed, wide-area packet networks. The evaluatioat value (see discussion below) and a fix of the check to reduce
section presents the results of running a “stripped-down” veéhe congestion window upon leaving fast recovery.

IIl. RELATED WORK

Simulator



TABLE |
H1 H3 AVERAGE THROUGHPUT[KB/S] PER CONNECTION
@ 200 Kbytes/sec@ Background traffic
\_~ soms  \ 7Y/ low high
H2 H4 Reno| Vegas| Reno| Vegas
Ethernet Ethernef Reno || 73.4| 724 16.1] 133
Vegas || 105.5| 101.4| 35.1| 29.2

TABLE Il

Fig. 1. Network topology for simulations.
AVERAGE RETRANSMISSIONKB] PER CONNECTION

B. Topology Background traffic
. _ low high
For our experiments, we emulate the topology presented in Reno| Vegas| Reno| Vegas

Figure 1. To ensure that the results of our experiments are com-
parable to those of previous work, we chose exactly the same
topology as in the original \Vlegas paper [6]. For the same rea-
son, the segment size used is 1.4KB, the router queue size is ten
segments, and the router queuing dlsc_lpllne s FIFO. Howevg\r/aluation of the performance implications of the individual al-
to prevent any non-congestion-related influences on the congés- . .
) . . .g%orlthms incorporated in TCP Vegas.

tion window, we chose larger sender and receiver buffer sizes

(|.e.,_ 128KB instead of 50KB) for the TCP hosts. The TCP VI. ALGORITHMS IN TCP VEGAS

receivers do not employ delayed acknowledgments; since TCP ) )

Vegas's congestion detection mechanism reacts to changes in tHeor the evaluation of the algorithms, we take the approach of

RTT, delayed acknowledgments could affect the performar@g( factorial design with replications [19]. This methodology
severely, as shown in [1]. allows us to determine the effect kfactors, each of them hav-

We validated both the simulator and the network topology B )9 wo Ievels: In the case of TCP Vegas, these factors are the
repeating some of the experiments from [6][8]. Our version fferent algorithms, as pre_sented in Section Il. The factor levels
gre “on” and “off”; they indicate whether the TCP Vegas algo-

TCP Reno performs slightly worse than the original versio _ o e o
this difference is due to the more conservative computationrbthm is used (“on”) or whether th_e al_gorlthm is turned *off”, so
that the default TCP Reno behavior is used.

the timeout value (RTO), that is, the RTO is computed as t K ’ ) -
smoothed RTT plus four times the RTT variation (as propose_dA 2" factorial design requires that each of the factors (algo-

in [17]) instead of only plus two times the RTT variation (a&thms) can be independently turned on or off. Therefore, we
proposed in an earlier version of [17]) first had to modify the TCP Vegas source code to separate the

various algorithms from each other and to allow each of the al-

gorithms to be selectable individually. These changes required a

close inspection of the source code. This inspection revealed
To gain some insight on the performance of TCP Vegas, weat TCP Vegas contains some more changes above the ones

simulate a transfer of 1MB of data from host H1 to host HBentioned in [6][8]. The complete list of algorithms that are

for varying degrees and types of background traffic. The baakew in TCP Vegas is presented in the following. Algorithms

ground traffic, which flows from host H2 to host H4, is geneland changes (A)—(E) are discussed in [6][8] and have already

ated by TRAFFIC, an-kernel protocol which simulates Internetbeen described in Section Il, whereas changes (F)—(J) are not

traffic and which is based doplib [9]. Each type of experiment mentioned in [6][8].

is run fifty times. Tables | and Il present the results from thege Congestion detection during slow-start;

experiments. In the case of low background traffic, TRAFFICB. Congestion detection during congestion avoidance;

connection inter-arrival time is 0.1s, for high background tra€. More aggressive fast retransmit mechanism;

fic, it is 0.03s. With regard to throughput, TCP Vegas outpeD. Additional retransmissions for non-duplicate ACKs;

forms TCP Reno in each of the four scenarios, with improve. Prevention of multiple reductions of the congestion window

ments ranging from 40% up to 120%. Moreover, TCP Vegas case of multiple segment loss;

retransmits between 6% and 65% less data than TCP Reno. F. Reduction of the congestion window by only 1/4 after a re-
These results confirm other research that reports partially inevery (instead of halving it as in the case of TCP Réno)

pressive improvements and fewer retransmissions for TCP \&- A congestion window size of two segments at initialization

gas. Tables | and Il serve as starting point for our more detailadd after a timeout (TCP Reno sets the size of the congestion

window to one segment in these situatityns

’Note that TCP Vegas's fine-grained timeout values are computed with the al-
gorithm proposed in the earlier version of [17]. Also note that TCP Vegas start§This algorithm has already been identified by Ahn et al. [1] as part of TCP
the retransmission timer for a segment as soon as it is sent, whereas TCP Regas.
starts the timer for a segment only when the segment preceding it is acknow#For TCP Reno, an initial congestion window size of two segments has re-
edged. cently been allowed [4].

Reno || 48.6| 49.3| 122.7| 140.5
Vegas| 16.8| 18.8| 113.0| 131.9

V. PERFORMANCE EVALUATION



TABLE 1lI

H. Burst avoidance limits the number of segments that can be
SCENARIO FOR VIOLATED INVARIANTS.

sent at once (that is, back-to-back) to three segments;
I. The congestion window is not increased if the sender is no

able to keep up, that is, the difference between the size of hEvent Eq.3| Eq.4 | begseq| sndnxt | snduna

congestion window and the amount of outstanding data is larger 5 10 S

than two maximum-sized segments; timeout 5 5 5

J. Spike suppression limits the output rate to at most twice the?€nd 5&6 5 / 5

current rate. (This algorithm is turned off by default.) Jis acked —2 2 ! 10 10
When separating the algorithms from each other, we kept th§€nd 10-12 ! 13 10

necessary code changes to a minimum to avoid any behaviardf IS acked]| 3 6 13 13 1

differences between the original and our implementation of TCP

Vegas. We validated our implementation by making sure that . .
our version of TCP Vegas with all algorithms turned off prot_)ur sender always has some data to send, we disabled the piece

duces the same results as the TCP Reno implementation. S(?lanOde resettingaseRTTor our evaluations.

ilarly, we checked that our version of TCP Vegas with all algq~ \sqation of invariant
rithms turned on and the original implementation of TCP Vegas

achieve identical throughputs. In congestion avoidance, TCP Vegas’s congestion detection
scheme checks every RTT whether network conditions have
VII. DEVIATIONS FROM SPECIFICATION changed enough to evoke a change in the congestion window ad-

Section VI listed some changes to TCP Reno that were Al&tment Po"cy- To decide whe_ther and how the size of the con-
identified before. In addition, our inspection of the source codgstion window should be adjusted, TCP Vegas compares the

of TCP Vegas and its evaluation also revealed some scenafi gected throughput to the measured actual throughput [6][8].

in which the TCP Vegas implementation does not quite achiel8€ expected throughput is computed as

what was intended and/or described by the authors in the origi- windowSize

nal papers [6][8]. expected= — - o— 1)

A. Timeout behavior wherewindowSizes the number of bytes currently in transit.
In slow-start and congestion avoidance, TCP Vegas chedii¢ actual throughput is computed as

once every RTT whether it must modify its strategy for updat- fttlen

ing the congestion window. In slow-start, it checks whether it actual= (2)

must give up the exponential opening of the congestion window rt

and switch to congestion avoidance. In congestion avoidanggererttLenreflects the number of bytes transmitted during the
it checks whether the congestion window must be increased liist RTT andrtt is the average RTT of the segments acknowl-
early, must be held constant during the next RTT, or whetheei§iged during the last RTT.

must immediately be reduced by one segment. In case of a timein the released TCP Vegas implementatisindowSizethe
out during congestion avoidance, the released version of Taifinerator of Eq.(1), is computed as

Vegas fails to immediately fall back to exponential opening (as

would be appropriate for a slow-start), instead the window is snd.nxt— snd.una+ min(maxseg- acked 0),® (3)

opened only linearly. In the worst case, this conservative open- _ . ) _
ing prevails until all the data sent before the timeout is final heremaxsegs the maximum segment size, aackedis the

acknowledged, that is, possibly for several RTTs. We alter ymber of bytes at_:knowledged t_)y the last A(_IKLen, the nu-
TCP Vegas to immediately change its strategy for updating ferator of Eq.(2), is determined in the following way:
congestion window in case of a timeout.
snd.nxt— begseq (4)
B. ResetofbaseRTT where begseqis the value ofsndnxt during the previous
When executing the check mentioned above, TCP Vegas cemputation ofactual and expected An acknowledgment for
setsbaseRTTif only one segment has been transmitted durinigeg seqtriggers computation adctualandexpected
the last RTT. With the help of this reset, TCP Vegas may be According to [6][8], the following invariant must hold:
able to cope with routing changes which increase the minimum
RTT. Since TCP Vegas employs a minimum size of two seg- expected> actual 5)
ments for the congestion window, this reset is triggered only o _ i _
when the sender is not able to keep up or has no data to send. '_I'able Il shows hqw this invariant can be_ V|olate_d in case of
In rare cases, this reset can result in setiageRTTo a very a timeout due to a single Io_ss. '_I'he table gives a_lt|me sequence
small value that is unrelated to the current network conditiorfd, €vents that lead to two violations of the invariant. For each

Since there are no routing changes in our simulation and siffent the values aindnxt, snduna andbeg seqare displayed
after that event has been processed. The ordering of the columns
5paseRTTs used for computing the expected throughput. According to [6][8],
baseRTTdenotes the RTT of a segment when the connection is not congestefisndnxt and snduna designate variables from the BSD implementation of
In practice baseRTTeflects the minimum of all measured RTTs. TCP and indicate the next segment to be sent resp. to be acknowledged.



TABLE IV

(from left to right) is identical to the order in which the variables
AVERAGE THROUGHPUT[KB/S] PER CONNECTION

are updated resp. in which the equations are computed. The two
ACKs arriving after the timeout both trigger the recalculation of

actualandexpectedand in both cases the invariant is violated, Background traffic

that is, expecteds smaller tharactual (assumingbaseRT T~ low high

ft). Reno| Vegas(’) | Reno| Vegas()
The first violation is the consequence of a “large ACK” that Reno 73.4 71.8| 16.1 13.0

acknowledges more than one segment. To remedy this problem, | Vegas || 105.5 101.4| 35.1 29.2

we omitted the last term of Eq.(3) in the TCP Vegas implemen- Vegas’ || 103.7 99.6| 34.6 28.4

tation used for our study. The second violation is caused by

computing the actual bandwidth over data sent more than one TABLEV

RTT ago. We fixed this problem by resettingg seqin case of AVERAGE RETRANSMISSIONYKB] PER CONNECTION

an ACK acknowledging data sent before a timeout. In this way,

the computation of the actual bandwidth will not include data Background traffic

sent before the timeout. low high

Reno| Vegas() | Reno| Vegas()

D. Discussion Reno || 48.6| 495] 122.7| 144.8
How do these fixes affect the performance of TCP Vegas? Vegas 16.8 18.8 | 113.0 131.9

First, the fix mentioned in Section VII-A may effect a change Vegas’ || 16.9 18.5| 115.8 139.2

to better performance, because it allows the congestion window

to open appropriately fast in slow-start, that is, faster than if

the sender would erroneously continue to adjust the conges#@@Ww us to quantify the effect of each individual algorithm and

window size according to the Congestion avoidance Strategy_ the effects of all pOSSible interactions of the algorithms. For
Second, in congestion avoidance, the following conditidh= 10 algorithms, the experiment would result if'2 1 pos-

must hold if the congestion window is to be openadg posi- Sible effects, most of them being probably rather smdlb re-

tive and usually set to 1): duce complexity and increase the “expressiveness” of our exper-
iments, we clustered the algorithms into three groups according
(expected- actual) x baseRTT< a (6) to the phase they affect (i.e., slow-start, congestion avoidance,

and recovery), and set up &rZactorial design with thé = 3
If the invariant of TCP Vegas is violated, the difference betwegihases each representing a factor. The factor levels “on” and
expecte@ndactualis negative, that is, inequation (6) holds antoff” mean that either all the algorithms affecting a particular
the congestion window size may erroneously be increased. Thiitase are turned on or that all of them are turned off. This de-
action may result in a more aggressive window opening than &lgn reduces the possible factors and the interaction of factors
tended. Therefore, by fixing the problem of a violated invarianiffecting the performance t6*2- 1 = 7. The algorithms have
we expect TCP Vegas to become less aggressive. been clustered as follows:

Tables IV and V repeat the results from Tables | and II, arglow-start: Congestion detection (algorithm (A) presented in
additionally show the results for the TCP Vegas version thgection VI), and congestion window size of two segments (G).
incorporates the fixes mentioned (called TCP Vegas’). NoGbngestion avoidance:Congestion detection (B).
that for the TCP Reno and TCP Vegas’ experiments (first a@bngestion recovery: More aggressive fast retransmission
third row of Tables IV and V), we used TCP Vegas' as backtrategy (C), retransmission upon ACK for new data (D), reduc-
ground traffic. (This is the reason why the results for the TGfn of congestion window by/@ (F), and avoidance of multiple
Reno experiments differ slightly from those presented in Teeductions of congestion window (E).
bles | and 1I.) For the TCP Vegas experiments (second row @fhe algorithms “burst avoidance” (H), “no congestion window
Tables IV and V), the unmodified TCP Vegas was used bothiagreases” (I), and “spike suppression” (J) are always turned
foreground and as background traffic. off.)

The fixes result in slightly lower throughput for all four cases Each of the 2 experiments is repeated= 50 times. We de-
and in slightly more retransmissions in three of the four casesrmined the effect of the algorithms in the three phases on the
Overall, TCP Vegas’ achieves similar performance when comtroughput of TCP Vegas and on the number of retransmissions
pared to the original version. For the rest of this paper, the tegp applying the methodology described in [19].

TCP Vegas is used to refer to TCP Vegas'.
B. Results for throughput

VIIIl. | NFLUENCE OF VARIOUS ALGORITHMS . .
The 2 factorial design allows us to compute the through-

A. Reduction of complexity puty for a specific combination of algorithms in the following

As summarized in Section VI, TCP Vegas employs ten add¥ay [19]:
tional algorithms over TCP Reno. A completé 2actorial de-
sign requires that each possible combination ofktke10 algo- Y = Omeant Qss' Xss+ Qca- Xca+ Qrec- Xrec +
_”thms 'S_ chosen and th_a_t the eXpe”mem described in Section "‘O\Ie conducted such an experiment and found that the influence of most com-
is runr times for a specific setup [19]. This methodology wouldinations was indeed smaller than 1%.



TABLE VI TABLE VII

THROUGHPUT[KB/S] (LOW BACKGROUND TRAFFIC). THROUGHPUT[KB/S] (HIGH BACKGROUND TRAFFIC).
TCP Reno TCP Vegas TCP Reno TCP Vegas
Effect | Percentage|| Effect | Percentage Effect | Percentage|| Effect | Percentage
q of variation q of variation q of variation q of variation
mean 86.64 8390 mean 26.31 20.97
Ss 7.14 27.71 5.57 19.38 Ss 0.022 0.00 0.078 0.00
ca 2.06 2.30 2.25 3.17 ca -0.77 0.41 || —0.69 0.42
rec 6.64 2398 6.68 2791 rec 9.65 65.22 7.96 5578
ssca 0.178 0.02 0.46% 0.13 ssca 0.52 0.19 0.90 0.72
ssrec 1.09 0.65 0.95 0.56 ssrec —0.96 0.64 || —0.79 0.55
carec 0.64 0.22 0.4(% 0.10 carec —0.53 0.19 || —0.342 0.10
sscarec || —0.68 0.25 || —0.61 0.24 sscafrec 0.33 0.07 0.37@ 0.12
error 44.88 4850 error 33.27 42.30
90% 0.59 0.57 90% 0.45 0.45
2Not significant. 2Not significant.
OsscaXss Xcat ..+ the largest effect on throughput, followed by the changes during
Oss.carec Xss- Xca - Xrec, recovery. TCP Vegas’s congestion detection mechanism during

L ) _ _ congestion avoidance is responsible for only 2% of the variation.
Whe_rexi is 1 if all the algorithms in phaseare turn_ed on gnd The interactions between the phases have only a small effect on
—1 ifthey are tumned off4s slow-startca congestion avoid- throughput or are not statistically significant. 45% of the varia-
ance,rec: recovery),q; is the effect of the algorithms in phasetion in throughput is due to experimental errors.
i! Gi_j indicates_the ‘?ﬁe_C‘ .Of the interactions betyveen the algO'For low TCP Vegas background traffic, 28% of the variation
rithms in phasesand; (similar for g;_j ), anddmeanis the mean explained with the modified algorithms during recovery,
throughput of all experiments. followed by the changes during slow-start. 3% of the variation

' She interactions between the different phases are again small or

ports the mean throughput for a_II‘r_2: 400_exper|ments and not statistically significant. Nearly half of the variation is due to
the effectsg of all factors and their interactions on the (meanéxperimental error

throughput. We can compute the average throughipiar ex- The data for the high background traffic scenarios is given

ample, for the cor_wflgurat!on where all the algorithms in SlOVYﬁ Table VII. In the case of TCP Reno background traffic, the
start and congestion avoidance are turned on and all the algo

rithms in recovery are turned off, and TCP Reno is used fot)mlnant effect is the change_d behavior during recovery. All
. ) other effects have only small influence and/or are statistically
background traffic as follows:

not significant. Note that TCP Vegas's new congestion avoid-
y = 8664+7.14-1+2.06-1+6.64-—1+ ance mechanism has a (small) negative effect on performance.
017-1-141.09-1--140.64-1. -1+ Experimental errors acgount foy 3 of the total variation. _
The results for the high TCP Vegas background traffic sce-
—068-1-1--1 nario look similar to those for the TCP Reno scenario, that is,
= 8832KB/s the changes during recovery explain most of the variation seen
in the experiments. Again, the effect of the modified behavior

The columns “percentage of variation” in Table VI indicateauring congestion avoidance is negative

how much of the variation of the throughputan be explained
by effectq and is therefore a measure for the “importance”
a factor. Since the measurements are repeatedb0 times,
the percentage of the total variation that can be attributed toTable VIII presents the influence of the three phases on
experimental errors can be determined. The row “error” réie amount of retransmitted data for low background traffic.
ports this variation. Moreover, the value given in the “90%Both for TCP Reno and for TCP Vegas background traffic, the
row allows computation of the 90% confidence intervals fahanges in slow-start dominate, followed by the changes in con-
the mean throughput and each effect (e.g., in the case of T@#stion avoidance. Note that the modifications in recovery and
Reno background traffic, the 90% confidence intervabfgis the interactions between the modifications in slow-start and in
7.144+ 0.59). Confidence intervals that include O indicate thabngestion avoidance increase the amount of retransmitted data.
the particular factor (or factor combination) is not statistically In the case of high background traffic, as shown in Table IX,
significant. the experimental error explains about 90% of the variation both
From Table VI, we conclude that for low TCP Reno baclkior TCP Reno and for TCP Vegas background traffic. Compared
ground traffic, TCP Vegas’s new algorithms in slow-start hate the experimental error, the effects of the individual phases on

c&_ Results for retransmissions



TABLE VIII TABLE IX

RETRANSMISSIONSKB] (LOW BACKGROUND TRAFFIC). RETRANSMISSIONS[KB] ( HIGH BACKGROUND TRAFFIC).
TCP Reno TCP Vegas TCP Reno TCP Vegas
Effect | Percentage| Effect | Percentage Effect | Percentage|| Effect | Percentage
q of variation q of variation q of variation q of variation
mean 29.02 3275 mean 12084 14402
Ss -10.74 4312 || —12.43 54.91 Ss 2.55 1.09 5.58 3.45
ca —8.65 27.97 —6.38 14.48 ca -2.21 081 ]| —1.84 0.37
rec 3.08 3.56 3.05 3.31 rec -4.79 3.83 || —6.31 441
ssca 5.42 10.96 241 2.06 ssca 1412 0.33 1452 0.23
ssrec 0.3228 0.04 0.4(7 0.06 ssrec —-3.24 175 | -3.22 114
carec —1.98 1.47 —1.53 0.83 carec 0.252 0.01| —-0.248 0.01
sscatrec 0.43 0.07 0.25% 0.02 ssca.rec 0.978 0.16 || —0.26% 0.01
error 12.82 24.34 error 92.02 90.39
90% 0.38 0.54 90% 152 185
2Not significant. 2Not significant.
TABLE X

the number of retransmissions are negligible. This is not surpris- AVERAGE THROUGHPUT[KB/S] (WAN SCENARIO).

ing as TCP Vegas (that is, the conglomerate of all algorithms)

does not seem to be not particularly successful in reducing the Background traffic

number of retransmissions (compared to TCP Reno) in the case Reno | Vegas

of high background traffic in the first place (Table V). Reno 15.0 14.7

D. Conclusions Vegas|| 18.6 16.4

D.1 Slow-start
For the low background traffic scenarios, the changes in slow-In Lhe h'g_h baltlzkgroufrrld traflT]c Z(_:enarlo, thebchangesrl]n Slf(f)W'
start are important, especially if the background traffic is T arthave virtually no effect. The discrepancy eMeent e efiec-
\yeness of these changes for the low and the high background

Reno. An inspection of the packet traces reveals that TCP _ SN - d | : :
gas’s congestion-sensitive window update strategy is successful IC Scenarios 1S surprising an Wf%‘”a”ts. a closer inspection.
or this purpose, we repeated our simulations for a WAN sce-

in avoiding timeouts in the initial slow-start. TCP Reno’s faster . S .
g rio.  The topology for the WAN scenario is identical to the

and unresponsive exponential opening of the congestion ) . . .
P b P g g e described in Section I1V-B; the delay of the bottleneck link

dow in this phase may result in overshooting the available bal . N . :
width and loosing multiple segments. Such damage can then'%élooms’ its bandwidth is 1.5M_b|t/s, and_the size of the route_r
ueues is 50 segments. We simulate high background traffic

overcome only with a timeout. Since background traffic is low, . S : .
y g ith a connection inter-arrival time of 0.03s). Table X shows

transfers are short (on the order of a few seconds). Therefgje, . .

a timeout affects throughput severely. By sensing the incipi { ,:Ihroughp_ut Wh'eVEd hby -LCP Rfeno and TCP Vegas in tge

(self-induced) congestion in slow-start, TCP Vegas can av P \?cenano. | e note that t edpelroorzrgoa/ncimp;rove;}men_ts_ yI

such timeouts and thus perform considerably better than T =gas are less pronounce (10-20%) than for the origina
topology. Table Xl lists the influence of the three phases and

Reno. The evaluation of a more detailedexperiment, where ~F°" ) , H ;
each of algorithms (A)-(G) represents a factor, shows that C&H_ew interactions on TCP Vegas's throughput. It is interesting
’ note that the changes in slow-start negatively affect through-

gestion detection in slow-start in fact has the largest positive 5.

fect on throughput of all the algorithms (it explains about 25gut. This observation implies that in cases with high background

of the variation), whereas the influence of the second changérfﬁmc' TCP Vegas’s sensing of incipient congestion in slow-start

slow-start (initial window of two segments (G)) is negligible.and switching to congestion avoidance is too conservative and

The problem of overshooting the available bandwidth in the inq-wlt tthe” i))erfotrtrr_lk?ntcz |tm|i;]ovehments (gompared to TCPbRIeno)
tial slow-start has also been recognized by other researchers, all be atributed to the changes in recovery (see below).
since the release of TCP Vegas, a humber of papers addres ﬁn examining the amount of refransmitted data for the WAN
this problem have been published [15][3]. By reducing the lik&* arlor; we fmg thaft the slow-start cha_nges do not help to de-
lihood of timeouts in slow-start, congestion detection also sugease the number of retransmissions, either.

ceeds to reduce the number of retransmissions. Trexger-

. o . D.2 Recovery

iment shows that nearly 50% of the variation can be explained
with it. Interestingly, algorithm (G), which is responsible for The changes in recovery have the largest effect on throughput
3% of the variation, increases the number of retransmissiofexcept for the case of low TCP Reno background traffic, where
Therefore, initializing the size of the congestion window to twthe slow-start changes are slightly more effective). One may
segments may be too aggressive. suspect that TCP Vegas’'s more aggressive fast retransmission



TABLE XI

THROUGHPUT[KB/S] (WAN SCENARIO).

Reno are caused by multiple segment loss, therefore, changes
which help to reduce the number of such timeouts prove very
helpful. The results for TCP Vegas's fast retransmission pol-

TCP Reno TCP Vegas icy (C) support Jacobson’s argumentation [18] who claimed that
Effect | Percentage| Effect | Percentagel the new policy most likely results in only a negligible perfor-

g of variation g of variation | mance gain. The fact that algorithm (E) has virtually no effect
mean 17.96 16.26 on throughput indicates that the multiple segment loss situations
SS —2.87 1231 || —1.54 4.61 that cannot be remedied by algorithm (D) can hardly be survived
ca -0.19? 0.05 || —0.63 0.78 without incurring a timeout, most likely because the congestion
rec 4.80 34.29 3.25 20.53 window is simply too small to allow for further fast retransmis-
ssca 0.39 0.22 0.05° 0.00 sions to be triggered (in scenarios with high background traffic).
ssrec -1.74 4.52 || -0.90 159 In summary, TCP Vegas'’s techniques for congestion recovery
carec 0.30% 0.13 0.16% 0.05 (in particular algorithm (D) that addresses problems related to
sscarec 0.01% 0.00 || —0.2¢° 0.08 |  multiple segment loss) prove to be very effective and mainly re-
error 4848 72.36 sponsible for the impressive performance gains over TCP Reno
90% 0.37 0.40 observed. Although effective, algorithm (F) may be problem-

atic in terms of fairness. We note that TCP Reno’s deficiencies
in dealing with multiple segment loss have also been pointed out
by other researchers (e.g., [12][15]), and in recent years a num-

. . . . I ber of solutions have been proposed that enhance TCP Reno’s
policy (C) is mainly responsible for the gain in performance

However, the evaluation of the’ 2xperiment reveals that in theOlata and congestion recovery mechanisms to remedy these prob-

high background traffic case, reducing the congestion Windtl)?/vms (e.g., SACK TCP [20], or "NewReno" TCP [13], etc.).

by only 1/4 (F) has the largest effect (about 28% for TCP Re 3 Congestion avoidance
background traffic and about 7% for Vegas background traffic),
followed by the retransmissions triggered by ACKs for new data Our experiments show that the probably most innovative fea-
(D; Reno: 9%, Vegas: 2%). The influence of the more aggrasre of TCP Vegas, i.e., its congestion detection mechanism dur-
sive fast retransmission policy (C) is even smaller (Reno: 3%g congestion avoidance, actually has the least influence. lIts
Vegas: 2%). Algorithm (E), which avoids multiple reductions ahfluence is even negative in the high TCP Reno background
the congestion window in recovery, has no effect on throughptraffic scenario. Table XII summarizes these findings. It repeats
There are two reasons why algorithm (F) improves TCP Ve results from Table IV and in addition shows the through-
gas’s performance: First, shrinking the congestion window Ipyt achieved by a version of TCP Vegas (Vegas wdp that
only 1/4 (instead of halving it) results in a larger congestioxcludes the congestion detection mechanisms in congestion
window after recovery. Second, algorithm (F) alters the recoavoidanc&. These numbers suggest that the congestion avoid-
ery behaviot. By halving the congestion window, TCP Ren@nce mechanism of TCP Vegas is only rather moderately effec-
must wait for about half an RTT until enough duplicate ACKs#ive. Furthermore, considering a version of TCP Vegas which
have arrived to let the congestion window become larger tharerely includes the novel congestion avoidance mechanisms
the amount of data currently outstanding. On the other harfdegas onlyca), we see only a minor improvement over TCP
TCP Vegas must wait only for about 1/4 of an RTT. Even thoudgkeno for low background traffic loads and even lower through-
algorithm (F) results in considerable throughput improvementajts in situations with high background load.
it may do so at the cost of other connections. For example, weOne would expect TCP Vegas to perform better (than TCP
note that (F) explains 28% of the variation in case of high TOReno) because of its congestion avoidance mechanism for the
Reno background, but only 7% in case of high TCP Vegas bagitowing reason: TCP Vegas can proactively reduce the con-
ground. This result seems to indicate that algorithm (F) allow#stion window by small amounts (a single segment at a time)
Vegas to grab a larger share of the bottleneck bandwidth. Thisavoid packet loss. A packet loss would result in a congestion
reasoning is supported by the observation that TCP Reno gaimdow reduction by a large amount. So, the expectation is that
erally achieves lower throughput when running on TCP Vegés number of) small rate reductions affects throughput less than
background traffic (Table I). We find that TCP Reno indeed suthe rate-halvings after packet loss. However, we observe in this
fers when competing with TCP Vegas background traffic apgper (and other research supports these results [2] [5]) that this
that TCP Vegas is able to “steal” bandwidth from TCP Renfope is in vain. Thus, the empirical evidence indicates that TCP
Since the changes in congestion recovery (and among thoseyaljas’s congestion avoidance mechanism is too conservative.
gorithm (F)) have the largest effect, they are mainly responsibleas far as the impact on the amount of retransmitted data
for this asymmetry (or unfairness). is concerned, we find that TCP Vegas's congestion detection
Algorithm (D) helps to avoid timeouts due to multiple segmechanism is quite successful. However, we also note that both
ment loss. As shown in [5], the majority of the timeouts in TCRyr low and high background traffic, other factors contribute

8After the fast retransmission, the congestion window is set to half of its pre\mOre to the reduction than this partICUIar mechanism.
ous size plus three segments. It is increased by one segment for every duplicate

acknowledgment. New data can be sent as soon as the size of the congestfitecall that TCP Vegas refers to the corrected version described in Sec-
window is larger than the amount of outstanding data. tion VILI.

2Not significant.
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IX. PROBLEMS OF CONGESTION AVOIDANCE ime [o]
Ime [s
As shown in Section VIII, the influence of TCP Vegas'’s novel ' _ _
congestion avoidance mechanisms on throughput is at best mod- Fig. 2. Connections sharing bottleneck.
erate. This section shows that this mechanism may even exhibit

fairess problems. is the smallest. On the other hand, the connection started last

achieves the largest congestion window and thus gets the largest
share of the bottleneck bandwidth. (The size of the congestion
In congestion avoidance, TCP Vegas begins to decreasejigdow of the second connection is identical to the one of the
congestion window when the following condition is m@ti§¢ first connection in equilibrium.) Note that the size of the con-
pOSitive and Usua”y set to 3; see Section VII-C for a deflnltl%snon window of the first connectiontat 3s Corresponds to
of terms): the size of the congestion window of the last connection during
equilibrium. However, whereas the first connection is forced to
) * baseRTT> B. reduce its congestion windowtat 3s, later, the last connection
does not have to adjust its window size.
Assuming thatvindowSizés equal tattLen, that is, the number The algorithm that_triggers the increase of the cpnges_tion Wi.n'
(%I%v suffers from a similar problem. The congestion window is

of segments in transit corresponds to the number of segme . . .
sent during the last RTT (this assumption is valid when Tdtgclr)e.ased when the following condition holds i usually set

Vegas reaches equilibrium), the above condition is true for

A. Unfair treatment of “old” connections

windowSize rttLen
baseRTT rtt

. . a
windowSizec 1 BaseRTT

rtt

1— basr+RTT' Since the term on the right side is bigger for a connection A, ini-
tiated in an congested network, than for a connection B, initiated

Consider the scenario when a TCP Vegas connection is initihile the network was uncongested, the condition is more likely

ated in an uncongested network. This connectita'seRTT to be fulfilled for type A connections than for type B connec-

is thus fairly close to the minimal RTT possible. If the networkons. Again, this means that connections of type A can obtain

becomes congested later on, the measured RTi) (ncreases an unfair share of the link bandwidth.

and thus the ternbaseRT 7/rtt; decreases. (For our simula- Note that TCP Reno’s congestion avoidance strategy may not

tion topology, we observed factors smaller than 0.5.) Now, aguarantee fairness, either. However, since every connection suf-

sume that a second connection is started. Since the netwieils some losses from time to time (due to self-induced packet

is congested, the second connection’s estimateaseRTT is loss), there is at least a chance for other connections to catch

bigger thanbaseRTT, so baseRTJ/rtt; is also bigger than up. This may not be the case for TCP Vegas, since TCP Vegas

baseRT J/rtt; (assuming thattty ~ rtt). This implies that the specifically tries to prevent the self-induced losses.

critical value ofwindowSizewhich would trigger a reduction of

the congestion window size, is bigger for the second connectiBn Persistent congestion

than for the first connection. Therefore, the second connectiony gddition to the problem discussed in Section IX-A, there

can achieve higher bandwidths than the first (“older”) connegre concerns about TCP Vegas behavior in situations with per-

tion. _ o sistent congestion [11]. In such a situation, a TCP Vegas con-
Figure 2 illustrates this fairness problem of TCP Vegas’s CORection overestimatesaseRTTand although it believes that it

gestion avoidance mechanism. The graph shows the congesig8 petweem andp segments in transit, in fact, it has many

window sizes of five staggered connections. The connectigigre segments in transit. A detailed description of the problem
share a bottleneck and are started in one second int¥ivale g given in [21].

first connection reacts the most to the congestion caused by the
other connections, and in equilibrium, its congestion windo@. Discussion

windowSize>

10The connections run over the topology shown in Section IV-B; on each side,-l_-here_ have t_)een SqueStlon_S to overcome t_he problem de-
three hosts are added; the size of the router queues are set to 25 segments.Scribed in Sections 1X-B by settingaseRTTo a bigger value



in case of persistent congestion (e.g., [21]). The problem[# L.S. Brakmo, S. W. O’'Malley, and L. Peterson. TCP Vegas: New Tech-

Section IX-A may be overcome in a similar way. Although re- hiques for Congestion Detection and Avoidance.Phoc. of ACM SIG-
. . . COMM '94, pages 24-35, London, October 1994.
settingbaseRTTnay be an adequate measure in case of routifg |_s. Brakmo and L.L. Peterson. Performance Problems in BSD4.4 TCP.

changes, where the minimum RTT indeed may become larger, Computer Communication Revig5(5):69-86, Oct 1995.

it is not an adequate work-around for the two problem cas[ék L.S._ Brakmo and L.L. Peterson. TCP Vegas: End to End C_ongestion
. . N Avoidance on a global InternetlEEE Journal on Selected Areas in Com-
described, sincdaseRTTis by definition “the RTT of a seg- munications 13(8):1465-1480, Oct 1995.

ment when the connection is not congested” [6][8]. So, settifj P.B. Danzig and S. Jamin. A Library of TCP Internetwork traffic Charac-
baseRTTo a bigger value than the minimum measured RTT vi- teristics. Technical Report 91-495, Computer Science Department, USC,

) Y : ; , 1991.
olates this definition and compromises the congestion avoidangg p.B. Danzig, Z Liu, and L. Yan. An Evaluation of TCP Vegas by Live Em-

mechanism'’s theoretical foundation. ulation. Technical Report 94-588, Computer Science Department, USC,
1994.
[11] S. Floyd. Re: TCP Vegas, April 1994. end2end-tf mailinglist.
X. CONCLUSIONS [12] S. Floyd. TCP and Successive Fast Retransmits, February 1995.

. . ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.
Our evaluation of TCP Vegas confirmed the results reportd] s. Floyd and T. Henderson. RFC 2582: The NewReno Modification to

by previous work [6][1] which showed that TCP Vegas can TCP's Fast Recovery Algorithm, April 1999.

. - . 4] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of
achieve significantly higher throughputs than TCP Reno. In éa Congestion Control Mechanisms of TCP. Prmoceedings of INFOCOM

dition to previous work, our in-depth analysis of TCP Vegas al- 99, pages 1329-1336, March 1999.

lows us to determine the effect of the various algorithms afi] J. C. Hoe. Improving the Start-Up Behavior of a Congestion Control

. . Scheme for TCP. IProceedings of ACM SIGCOMM ’'9fages 270—
mechanisms proposed by the inventors of TCP Vegas on perfor- 280, August 1996.

mance. [16] N.C. Hutchinson and L.L. Peterson. Tke&ernel: An Architecture for

Our experiment shows that TCP Vegas’s techniques for !mplementing Network ProtocoldEEE Transactions on Software Engi-
neering 17(1):64-76, January 1991.

slow-start and congestion recovery have the most influence 9] v, jacobson. Congestion Avoidance and ControPiaceedings of ACM
throughput as they are able to avoid timeouts due to multiple SIGCOMM 88 pages 314-329, August 1988.
segment loss. Therefore, TCP Vegas seems to be quite sucdé%ls-x; aJiﬁ*r?OI?;O”- problems with Arizona’s vegas, March 1994. end2end-tf
ful in overcoming a well-known problem of TCP Reno. Howpg) r. JairgLTHe Art of Computer Systems Performance Analygisin Wiley
ever, TCP Vegas’s most innovative feature, that is, its congestion & Sons, Inc., 1991.
detection mechanism during congestion avoidance, has only P! g'éh';"cet’ig‘e's'& chn'\g\?/Tg;gvrlﬁ esn'tg'ggg'n Sa"”gcﬁabi??;g”;w' RFC 2018: TCP
nor or even negative effect on throughput. Moreover, we foupg] J. Mo, R.J. La, V. Anantharam, and J. Walrand. Analysis and Comparison
that the congestion avoidance mechanism may exhibit problems of TCP Reno and Vegas. Rroceedings of INFOCOM "99ages 1556
related to fairness ampng Competir_1g connect_ions. As a co 9]' :-(.SgﬁénMgé}rlgh\;fng,ga‘nd S.K. Dao. A Measurement of TCP over Long-Delay
quence, for a conclusive comparative evaluation of TCP Vegas' Network. InProceedings of 6th Intl. Conf. on Telecommunication Systems
and TCP Reno, one must compare the effectiveness of Vegas's pages 498-504, March 1998.
techniques for slow-start and congestion recovery to the effec-
tiveness of similar enhancements to TCP Reno. We limited the
discussion to a scenario that has been investigated by the devel-
opers of TCP Vegas; different scenarios may still deserve further
investigations.

Transport protocols such as TCP incorporate a number of
complex algorithms (e.qg., for congestion control, data recovery,
etc.) whose effects on performance and whose interactions are
often not clearly understood. Our approach of a factor analy-
sis allowed us to shed some light on the effectiveness of various
algorithms of such a protocol and on the interactions of these
algorithms. We want to encourage future protocol developers to
decompose design and implementation early on to allow such
performance analysis and experimentation.
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