
TCP Vegas Revisited
U. Hengartner1, J. Bolliger1 and Th. Gross1 � 2

1Departement Informatik 2School of Computer Science
ETH Zürich Carnegie Mellon University

CH 8092 Zürich Pittsburgh, PA 15213

Abstract— The innovative techniques of TCP Vegas have been the sub-
ject of much debate in recent years. Several studies have reported that TCP
Vegas provides better performance than TCP Reno. However, the ques-
tion which of the new techniques are responsible for the impressive per-
formance gains remains unanswered so far. This paper presents a detailed
performance evaluation of TCP Vegas. By decomposing TCP Vegas into the
various novel mechanisms proposed and assessing the effect of each of these
mechanisms on performance, we show that the reported performance gains
are achieved primarily by TCP Vegas’s new techniques for slow-start and
congestion recovery. TCP Vegas’s innovative congestion avoidance mecha-
nism is shown to have only a minor influence on throughput. Furthermore,
we find that the congestion avoidance mechanism exhibits fairness prob-
lems even if all competing connections operate with the same round trip
time.

Keywords— TCP Vegas, Congestion control, Transport protocols.

I. I NTRODUCTION

TCP Vegas is a new design for TCP that was introduced
by Brakmo et al. [6][8]. TCP Vegas includes a modified re-
transmission strategy (compared to TCP Reno) that is based on
fine-grained measurements of the round-trip time (RTT) as well
as new mechanisms for congestion detection during slow-start
and congestion avoidance. The innovative techniques proposed
in [6][8], as well as the impressive performance gains (compared
to TCP Reno) reported [6][1], have been the subject of much de-
bate in recent years. This paper takes a fresh look at the design
of TCP Vegas and attempts to shed light on the advantages (and
disadvantages) of the innovations introduced by TCP Vegas.

TCP Reno’s congestion detection and control mechanisms
use the loss of segments as a signal that there is congestion in
the network [17]. TCP Reno has therefore no mechanism to de-
tect the incipient stages of congestion before losses occur and
hence cannot prevent such losses. Thus, TCP Reno isreactive,
as it needs to create losses to find the available bandwidth of the
connection. On the contrary, TCP Vegas’s congestion detection
mechanism isproactive, that is, it tries to sense incipient conges-
tion by observing changes in the throughput rate. Since TCP Ve-
gas infers the congestion window adjustment policy from such
throughput measurements, it may be able to reduce the sending
rate before the connection experiences losses.

U. Hengartner is currently with Carnegie Mellon University (email:
uhengart+@cs.cmu.edu).

Effort sponsored in part by the Advanced Research Projects Agency and Rome
Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-96-1-0287. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright an-
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Advanced Research
Projects Agency, Rome Laboratory, or the U.S. Government.

Since TCP Vegas is essentially a combination of several dif-
ferent techniques, each evoking considerable controversy on its
own, much of previous work either concentrated on discussing
and evaluating a particular mechanism in isolation or tried to
characterize the overall behavior of TCP Vegas. The question,
however, which of the techniques incorporated in TCP Vegas
are responsible for the performance gains reported in [6][8][1],
remains unanswered so far. To answer this question, we decom-
pose TCP Vegas into its individual algorithms and assess the
effect of each of these algorithms on performance.

The paper is organized as follows: Section II presents the var-
ious enhancements of TCP Vegas. Related work is reviewed in
Section III. Section IV describes the simulation environment
used for our experiments. Section V provides the basis for our
detailed evaluation by quantifying the speedup achieved by TCP
Vegas (over TCP Reno). The techniques incorporated by TCP
Vegas are listed in Section VI, and some problems in their im-
plementation are discussed in Section VII. Section VIII presents
the detailed results on how the various algorithms affect overall
performance. Finally, Section IX discusses the fairness of TCP
Vegas’s congestion avoidance mechanism.

II. TCP VEGAS

According to the published papers that describe TCP Ve-
gas [6][8], TCP Vegas differs from TCP Reno as follows:
New retransmission mechanism:TCP Vegas introduces three
changes that affect TCP’s (fast) retransmission strategy. First,
TCP Vegas measures the RTT for every segment sent. The mea-
surements are based on fine-grained clock values. Using the
fine-grained RTT measurements, a timeout period for each seg-
ment is computed. When a duplicate acknowledgement (ACK)
is received, TCP Vegas checks whether the timeout period has
expired. If so, the segment is retransmitted1. Second, when a
non-duplicate ACK that is the first or second after a fast retrans-
mission is received, TCP Vegas again checks for the expiration
of the timer and may retransmit another segment. Third, in case
of multiple segment loss and more than one fast retransmission,
the congestion window is reduced only for the first fast retrans-
mission.
Congestion avoidance mechanism:TCP Vegas does not con-
tinually increase the congestion window during congestion
avoidance. Instead, it tries to detect incipient congestion by
comparing the measured throughput to its notion of expected

1Since TCP Vegas may trigger a fast retransmission on the first duplicate ACK
(TCP Reno waits for three duplicate ACKs), we will—merely for the sake of
brevity—refer to this particular algorithm in TCP Vegas as the “more aggressive
retransmission strategy”.

throughput. The congestion window is increased only if these
two values are close, that is, if there is enough network capac-
ity so that the expected throughput can actually be achieved.
The congestion window is reduced if the measured throughput
is considerably lower than the expected throughput; this condi-
tion is taken as a sign for incipient congestion.
Modified slow-start mechanism: A similar congestion detec-
tion mechanism is applied during slow-start to decide when to
change to the congestion avoidance phase. To have valid com-
parisons of the expected and the actual throughput, the conges-
tion window is allowed to grow only every other RTT.

In [8], an additional algorithm is presented, which tries to in-
fer available bandwidth during slow-start from ACK spacing.
However, this algorithm was marked experimental, and it was
not used in the evaluation of TCP Vegas. (Hence, we also ex-
cluded it from our evaluation.)

Both [6] and [8] report between 37 and 71% better throughput
for TCP Vegas on the Internet, with one-fifth to one-half of the
losses. Simulations confirm these measurements; they also show
that Vegas does not adversely affect TCP Reno’s throughput and
that TCP Vegas is not less fair than TCP Reno.

III. R ELATED WORK

TCP Vegas’s new techniques for congestion avoidance, their
effect on TCP performance, and TCP Vegas’s behavior in the
presence of competing TCP Reno connections have been inves-
tigated by previous researchers. We now give a short overview
of this earlier work.

Ahn et al. [1] performed some live Internet experiments with
TCP Vegas. They report 4–20% speedups for transfers to a TCP
Reno receiver and 300% speedups for transfers to a TCP Tahoe
receiver. For both scenarios, TCP Vegas is found to retransmit
fewer segments and to have lower RTT average and variance.
Experiments in a WAN emulator with varying degrees of either
TCP Reno or TCP Vegas background traffic reveal that TCP Ve-
gas achieves higher throughputs for high congestion, whereas
TCP Reno outperforms TCP Vegas in the case of low conges-
tion.

With a fluid model and simulations, Mo et al. [21] show that
TCP Vegas, as opposed to TCP Reno, is not biased against con-
nections with long delays, and that TCP Vegas does not receive
a fair share of bandwidth in the presence of a TCP Reno con-
nection.

Hasegawa et al. [14] use an analytical model to derive that
TCP Vegas’s congestion avoidance mechanism is more stable
than the one of TCP Reno, that is, the congestion window of a
TCP Vegas connection may converge to a fixed value. However,
they also find that the mechanism sometimes fails to achieve
fairness among several connections with different round-trip
times.

With the help of a WAN emulator simulating a satellite link,
Zhang et al. [22] study the performance of various TCP ver-
sions over long-delay links. TCP Vegas achieves only half the
throughput of TCP Tahoe or TCP Reno. However, it retransmits
much less than other TCP variants.

Ahn et al. [2] introduce a new technique to speedup simula-
tion of high-speed, wide-area packet networks. The evaluation
section presents the results of running a “stripped-down” ver-

sion of TCP Vegas, which includes only its congestion detection
and window adjustment scheme, over a gigabit network. In the
experiments, TCP Vegas achieves only half of the throughput of
TCP Reno.

Such a restricted version of TCP Vegas is also evaluated by
Bolliger et al. [5]; several variants of TCP are implemented as
user-level protocols and evaluated in the Internet. TCP Vegas
is shown to cause fewer timeouts due to multiple segment loss
than TCP Reno. On the other hand, TCP Vegas suffers more
“non-trigger” timeouts than TCP Reno. Non-trigger timeouts
reflect missed opportunities to enter recovery. In this study, TCP
Vegas’s throughput is slightly worse than TCP Reno’s.

Danzig et al. [10] evaluate a pre-release version of TCP Vegas
which did not include Vegas’s new congestion avoidance mech-
anism. Since the authors cannot reproduce the claims made
in [6], they conclude that it is indeed TCP Vegas’s new con-
gestion avoidance mechanism that is responsible for the perfor-
mance improvements noted in [6].

The last three reports are contradictory; [2][5] may lead to the
conclusion that TCP Vegas’s new behavior during congestion
avoidance has a negative influence on throughput, whereas [10]
suggests that it has a positive influence. Unfortunately, research
showing throughput improvements for TCP Vegas has failed to
show which of TCP Vegas’s new algorithms is responsible to
what degree for the reported speedups. This paper tries to ad-
dress this issue based on simulations. Before turning to a de-
tailed evaluation of the effects of individual mechanisms present
in TCP Vegas, the following sections introduce the simulation
environment and present an initial performance evaluation of
TCP Reno and TCP Vegas which validates the experimental
setup.

IV. SIMULATION ENVIRONMENT

This section describes the simulation environment used to in-
vestigate the influence of the various new algorithms in TCP
Vegas.

A. Simulator

We run our simulation onx-sim, a network simulator based
on thex-kernel [16]. In this environment, actualx-kernel pro-
tocol implementations run on a simulated network. Our choice
of x-sim is based on the following two observations: First, the
evaluations in the original papers that describe TCP Vegas [6][8]
are also performed withx-sim. This fact gives us confidence that
our results are not biased by using a different implementation of
TCP Vegas. Second, we want to evaluate an implementation of
TCP Vegas based on production code. This requirement is ful-
filled by x-sim since its implementation of TCP Reno is directly
derived from the BSD implementation of TCP Reno.

We made two changes to the original implementations of TCP
Reno and TCP Vegas provided in thex-kernel. Both of these
changes were proposed in a paper from the inventors of TCP
Vegas [7] and have also been applied to the current TCP Reno
releases of FreeBSD and NetBSD. The changes include a modi-
fication to the algorithm for computing the retransmission time-
out value (see discussion below) and a fix of the check to reduce
the congestion window upon leaving fast recovery.

������
R2������

R1
200 Kbytes/sec

50 ms

EthernetEthernet

H1

H2

H3

H4

Fig. 1. Network topology for simulations.

B. Topology

For our experiments, we emulate the topology presented in
Figure 1. To ensure that the results of our experiments are com-
parable to those of previous work, we chose exactly the same
topology as in the original Vegas paper [6]. For the same rea-
son, the segment size used is 1.4KB, the router queue size is ten
segments, and the router queuing discipline is FIFO. However,
to prevent any non-congestion-related influences on the conges-
tion window, we chose larger sender and receiver buffer sizes
(i.e., 128KB instead of 50KB) for the TCP hosts. The TCP
receivers do not employ delayed acknowledgments; since TCP
Vegas’s congestion detection mechanism reacts to changes in the
RTT, delayed acknowledgments could affect the performance
severely, as shown in [1].

We validated both the simulator and the network topology by
repeating some of the experiments from [6][8]. Our version of
TCP Reno performs slightly worse than the original version;
this difference is due to the more conservative computation of
the timeout value (RTO), that is, the RTO is computed as the
smoothed RTT plus four times the RTT variation (as proposed
in [17]) instead of only plus two times the RTT variation (as
proposed in an earlier version of [17])2.

V. PERFORMANCE EVALUATION

To gain some insight on the performance of TCP Vegas, we
simulate a transfer of 1MB of data from host H1 to host H3
for varying degrees and types of background traffic. The back-
ground traffic, which flows from host H2 to host H4, is gener-
ated by TRAFFIC, anx-kernel protocol which simulates Internet
traffic and which is based ontcplib [9]. Each type of experiment
is run fifty times. Tables I and II present the results from these
experiments. In the case of low background traffic, TRAFFIC’s
connection inter-arrival time is 0.1s, for high background traf-
fic, it is 0.03s. With regard to throughput, TCP Vegas outper-
forms TCP Reno in each of the four scenarios, with improve-
ments ranging from 40% up to 120%. Moreover, TCP Vegas
retransmits between 6% and 65% less data than TCP Reno.

These results confirm other research that reports partially im-
pressive improvements and fewer retransmissions for TCP Ve-
gas. Tables I and II serve as starting point for our more detailed

2Note that TCP Vegas’s fine-grained timeout values are computed with the al-
gorithm proposed in the earlier version of [17]. Also note that TCP Vegas starts
the retransmission timer for a segment as soon as it is sent, whereas TCP Reno
starts the timer for a segment only when the segment preceding it is acknowl-
edged.

TABLE I

AVERAGE THROUGHPUT[KB/ S] PER CONNECTION.

Background traffic
low high

Reno Vegas Reno Vegas

Reno 73.4 72.4 16.1 13.3
Vegas 105.5 101.4 35.1 29.2

TABLE II

AVERAGE RETRANSMISSIONS[KB] PER CONNECTION.

Background traffic
low high

Reno Vegas Reno Vegas

Reno 48.6 49.3 122.7 140.5
Vegas 16.8 18.8 113.0 131.9

evaluation of the performance implications of the individual al-
gorithms incorporated in TCP Vegas.

VI. A LGORITHMS IN TCP VEGAS

For the evaluation of the algorithms, we take the approach of
a 2k factorial design with replications [19]. This methodology
allows us to determine the effect ofk factors, each of them hav-
ing two levels. In the case of TCP Vegas, these factors are the
different algorithms, as presented in Section II. The factor levels
are “on” and “off”; they indicate whether the TCP Vegas algo-
rithm is used (“on”) or whether the algorithm is turned “off”, so
that the default TCP Reno behavior is used.

A 2k factorial design requires that each of the factors (algo-
rithms) can be independently turned on or off. Therefore, we
first had to modify the TCP Vegas source code to separate the
various algorithms from each other and to allow each of the al-
gorithms to be selectable individually. These changes required a
close inspection of the source code. This inspection revealed
that TCP Vegas contains some more changes above the ones
mentioned in [6][8]. The complete list of algorithms that are
new in TCP Vegas is presented in the following. Algorithms
and changes (A)–(E) are discussed in [6][8] and have already
been described in Section II, whereas changes (F)–(J) are not
mentioned in [6][8].
A. Congestion detection during slow-start;
B. Congestion detection during congestion avoidance;
C. More aggressive fast retransmit mechanism;
D. Additional retransmissions for non-duplicate ACKs;
E. Prevention of multiple reductions of the congestion window
in case of multiple segment loss;
F. Reduction of the congestion window by only 1/4 after a re-
covery (instead of halving it as in the case of TCP Reno)3;
G. A congestion window size of two segments at initialization
and after a timeout (TCP Reno sets the size of the congestion
window to one segment in these situations4);

3This algorithm has already been identified by Ahn et al. [1] as part of TCP
Vegas.

4For TCP Reno, an initial congestion window size of two segments has re-
cently been allowed [4].

H. Burst avoidance limits the number of segments that can be
sent at once (that is, back-to-back) to three segments;
I. The congestion window is not increased if the sender is not
able to keep up, that is, the difference between the size of the
congestion window and the amount of outstanding data is larger
than two maximum-sized segments;
J. Spike suppression limits the output rate to at most twice the
current rate. (This algorithm is turned off by default.)

When separating the algorithms from each other, we kept the
necessary code changes to a minimum to avoid any behavioral
differences between the original and our implementation of TCP
Vegas. We validated our implementation by making sure that
our version of TCP Vegas with all algorithms turned off pro-
duces the same results as the TCP Reno implementation. Sim-
ilarly, we checked that our version of TCP Vegas with all algo-
rithms turned on and the original implementation of TCP Vegas
achieve identical throughputs.

VII. D EVIATIONS FROM SPECIFICATION

Section VI listed some changes to TCP Reno that were not
identified before. In addition, our inspection of the source code
of TCP Vegas and its evaluation also revealed some scenarios
in which the TCP Vegas implementation does not quite achieve
what was intended and/or described by the authors in the origi-
nal papers [6][8].

A. Timeout behavior

In slow-start and congestion avoidance, TCP Vegas checks
once every RTT whether it must modify its strategy for updat-
ing the congestion window. In slow-start, it checks whether it
must give up the exponential opening of the congestion window
and switch to congestion avoidance. In congestion avoidance,
it checks whether the congestion window must be increased lin-
early, must be held constant during the next RTT, or whether it
must immediately be reduced by one segment. In case of a time-
out during congestion avoidance, the released version of TCP
Vegas fails to immediately fall back to exponential opening (as
would be appropriate for a slow-start), instead the window is
opened only linearly. In the worst case, this conservative open-
ing prevails until all the data sent before the timeout is finally
acknowledged, that is, possibly for several RTTs. We altered
TCP Vegas to immediately change its strategy for updating the
congestion window in case of a timeout.

B. Reset of baseRTT

When executing the check mentioned above, TCP Vegas re-
setsbaseRTT5 if only one segment has been transmitted during
the last RTT. With the help of this reset, TCP Vegas may be
able to cope with routing changes which increase the minimum
RTT. Since TCP Vegas employs a minimum size of two seg-
ments for the congestion window, this reset is triggered only
when the sender is not able to keep up or has no data to send.

In rare cases, this reset can result in settingbaseRTTto a very
small value that is unrelated to the current network conditions.
Since there are no routing changes in our simulation and since

5baseRTTis used for computing the expected throughput. According to [6][8],
baseRTTdenotes the RTT of a segment when the connection is not congested.
In practice,baseRTTreflects the minimum of all measured RTTs.

TABLE III

SCENARIO FOR VIOLATED INVARIANTS.

Event Eq.3 Eq.4 beg seq snd nxt snduna
5 10 5

timeout 5 5 5
send 5&6 5 7 5
9 is acked � 2 2 7 10 10
send 10-12 7 13 10
10 is acked 3 6 13 13 11

our sender always has some data to send, we disabled the piece
of code resettingbaseRTTfor our evaluations.

C. Violation of invariant

In congestion avoidance, TCP Vegas’s congestion detection
scheme checks every RTT whether network conditions have
changed enough to evoke a change in the congestion window ad-
justment policy. To decide whether and how the size of the con-
gestion window should be adjusted, TCP Vegas compares the
expected throughput to the measured actual throughput [6][8].
The expected throughput is computed as

expected� windowSize
baseRTT � (1)

wherewindowSizeis the number of bytes currently in transit.
The actual throughput is computed as

actual � rttLen
rtt � (2)

whererttLen reflects the number of bytes transmitted during the
last RTT andrtt is the average RTT of the segments acknowl-
edged during the last RTT.

In the released TCP Vegas implementation,windowSize, the
numerator of Eq.(1), is computed as

snd nxt � snd una 	 min
 maxseg� acked� 0� � 6 (3)

wheremaxsegis the maximum segment size, andackedis the
number of bytes acknowledged by the last ACK.rttLen, the nu-
merator of Eq.(2), is determined in the following way:

snd nxt � beg seq� (4)

where beg seq is the value ofsnd nxt during the previous
computation ofactual andexpected. An acknowledgment for
beg seqtriggers computation ofactualandexpected.

According to [6][8], the following invariant must hold:

expected� actual (5)

Table III shows how this invariant can be violated in case of
a timeout due to a single loss. The table gives a time sequence
of events that lead to two violations of the invariant. For each
event, the values ofsnd nxt, snduna, andbeg seqare displayed
after that event has been processed. The ordering of the columns

6sndnxt andsnduna designate variables from the BSD implementation of
TCP and indicate the next segment to be sent resp. to be acknowledged.

(from left to right) is identical to the order in which the variables
are updated resp. in which the equations are computed. The two
ACKs arriving after the timeout both trigger the recalculation of
actualandexpected, and in both cases the invariant is violated,
that is,expectedis smaller thanactual (assumingbaseRTT�
rtt).

The first violation is the consequence of a “large ACK” that
acknowledges more than one segment. To remedy this problem,
we omitted the last term of Eq.(3) in the TCP Vegas implemen-
tation used for our study. The second violation is caused by
computing the actual bandwidth over data sent more than one
RTT ago. We fixed this problem by resettingbeg seqin case of
an ACK acknowledging data sent before a timeout. In this way,
the computation of the actual bandwidth will not include data
sent before the timeout.

D. Discussion

How do these fixes affect the performance of TCP Vegas?
First, the fix mentioned in Section VII-A may effect a change
to better performance, because it allows the congestion window
to open appropriately fast in slow-start, that is, faster than if
the sender would erroneously continue to adjust the congestion
window size according to the congestion avoidance strategy.

Second, in congestion avoidance, the following condition
must hold if the congestion window is to be opened (α is posi-
tive and usually set to 1):
 expected� actual��� baseRTT� α (6)

If the invariant of TCP Vegas is violated, the difference between
expectedandactual is negative, that is, inequation (6) holds and
the congestion window size may erroneously be increased. This
action may result in a more aggressive window opening than in-
tended. Therefore, by fixing the problem of a violated invariant,
we expect TCP Vegas to become less aggressive.

Tables IV and V repeat the results from Tables I and II, and
additionally show the results for the TCP Vegas version that
incorporates the fixes mentioned (called TCP Vegas’). Note
that for the TCP Reno and TCP Vegas’ experiments (first and
third row of Tables IV and V), we used TCP Vegas’ as back-
ground traffic. (This is the reason why the results for the TCP
Reno experiments differ slightly from those presented in Ta-
bles I and II.) For the TCP Vegas experiments (second row of
Tables IV and V), the unmodified TCP Vegas was used both as
foreground and as background traffic.

The fixes result in slightly lower throughput for all four cases
and in slightly more retransmissions in three of the four cases.
Overall, TCP Vegas’ achieves similar performance when com-
pared to the original version. For the rest of this paper, the term
TCP Vegas is used to refer to TCP Vegas’.

VIII. I NFLUENCE OF VARIOUS ALGORITHMS

A. Reduction of complexity

As summarized in Section VI, TCP Vegas employs ten addi-
tional algorithms over TCP Reno. A complete 2kr factorial de-
sign requires that each possible combination of thek � 10 algo-
rithms is chosen and that the experiment described in Section V
is runr times for a specific setup [19]. This methodology would

TABLE IV

AVERAGE THROUGHPUT[KB/ S] PER CONNECTION.

Background traffic
low high

Reno Vegas(’) Reno Vegas(’)

Reno 73.4 71.8 16.1 13.0
Vegas 105.5 101.4 35.1 29.2
Vegas’ 103.7 99.6 34.6 28.4

TABLE V

AVERAGE RETRANSMISSIONS[KB] PER CONNECTION.

Background traffic
low high

Reno Vegas(’) Reno Vegas(’)

Reno 48.6 49.5 122.7 144.8
Vegas 16.8 18.8 113.0 131.9
Vegas’ 16.9 18.5 115.8 139.2

allow us to quantify the effect of each individual algorithm and
the effects of all possible interactions of the algorithms. For
k � 10 algorithms, the experiment would result in 210 � 1 pos-
sible effects, most of them being probably rather small7. To re-
duce complexity and increase the “expressiveness” of our exper-
iments, we clustered the algorithms into three groups according
to the phase they affect (i.e., slow-start, congestion avoidance,
and recovery), and set up a 2kr factorial design with thek � 3
phases each representing a factor. The factor levels “on” and
“off” mean that either all the algorithms affecting a particular
phase are turned on or that all of them are turned off. This de-
sign reduces the possible factors and the interaction of factors
affecting the performance to 23 � 1 � 7. The algorithms have
been clustered as follows:
Slow-start: Congestion detection (algorithm (A) presented in
Section VI), and congestion window size of two segments (G).
Congestion avoidance:Congestion detection (B).
Congestion recovery:More aggressive fast retransmission
strategy (C), retransmission upon ACK for new data (D), reduc-
tion of congestion window by 1� 4 (F), and avoidance of multiple
reductions of congestion window (E).
(The algorithms “burst avoidance” (H), “no congestion window
increases” (I), and “spike suppression” (J) are always turned
off.)

Each of the 23 experiments is repeatedr � 50 times. We de-
termined the effect of the algorithms in the three phases on the
throughput of TCP Vegas and on the number of retransmissions
by applying the methodology described in [19].

B. Results for throughput

The 23 factorial design allows us to compute the through-
put y for a specific combination of algorithms in the following
way [19]:

y � qmean	 qss � xss 	 qca � xca 	 qrec � xrec 	
7We conducted such an experiment and found that the influence of most com-

binations was indeed smaller than 1%.

TABLE VI

THROUGHPUT[KB/ S] (LOW BACKGROUND TRAFFIC).

TCP Reno TCP Vegas
Effect Percentage Effect Percentage

q of variation q of variation

mean 86 64 83 90
ss 7 14 27 71 5 57 19 38
ca 2 06 2 30 2 25 3 17
rec 6 64 23 98 6 68 27 91
ss ca 0 17a 0 02 0 46a 0 13
ss rec 1 09 0 65 0 95 0 56
ca rec 0 64 0 22 0 40a 0 10
ss ca rec � 0 68 0 25 � 0 61 0 24
error 44 88 48 50
90% 0 59 0 57

aNot significant.

qss ca � xss � xca 	����	
qss ca rec � xss � xca � xrec �

wherexi is 1 if all the algorithms in phasei are turned on and� 1 if they are turned off (ss: slow-start,ca: congestion avoid-
ance,rec: recovery),qi is the effect of the algorithms in phase
i, qi j indicates the effect of the interactions between the algo-
rithms in phasesi andj (similar forqi j k), andqmeanis the mean
throughput of all experiments.

Table VI presents the results for low TCP Reno background
traffic and for low TCP Vegas background traffic. The table re-
ports the mean throughput for all 2kr � 400 experiments and
the effectsq of all factors and their interactions on the (mean)
throughput. We can compute the average throughputy, for ex-
ample, for the configuration where all the algorithms in slow-
start and congestion avoidance are turned on and all the algo-
rithms in recovery are turned off, and TCP Reno is used for
background traffic as follows:

y � 86 64 	 7 14 � 1 	 2 06 � 1 	 6 64 � � 1 	
0 17 � 1 � 1 	 1 09 � 1 � � 1 	 0 64 � 1 � � 1 	� 0 68 � 1 � 1 � � 1� 88 32� KB� s�

The columns “percentage of variation” in Table VI indicates
how much of the variation of the throughputy can be explained
by effectq and is therefore a measure for the “importance” of
a factor. Since the measurements are repeatedr � 50 times,
the percentage of the total variation that can be attributed to
experimental errors can be determined. The row “error” re-
ports this variation. Moreover, the value given in the “90%”
row allows computation of the 90% confidence intervals for
the mean throughput and each effect (e.g., in the case of TCP
Reno background traffic, the 90% confidence interval forqss is
7.14 � 0.59). Confidence intervals that include 0 indicate that
the particular factor (or factor combination) is not statistically
significant.

From Table VI, we conclude that for low TCP Reno back-
ground traffic, TCP Vegas’s new algorithms in slow-start have

TABLE VII

THROUGHPUT[KB/ S] (HIGH BACKGROUND TRAFFIC).

TCP Reno TCP Vegas
Effect Percentage Effect Percentage

q of variation q of variation

mean 26 31 20 97
ss 0 02a 0 00 0 07a 0 00
ca � 0 77 0 41 � 0 69 0 42
rec 9 65 65 22 7 96 55 78
ss ca 0 52 0 19 0 90 0 72
ss rec � 0 96 0 64 � 0 79 0 55
ca rec � 0 53 0 19 � 0 34a 0 10
ss ca rec 0 33a 0 07 0 37a 0 12
error 33 27 42 30
90% 0 45 0 45

aNot significant.

the largest effect on throughput, followed by the changes during
recovery. TCP Vegas’s congestion detection mechanism during
congestion avoidance is responsible for only 2% of the variation.
The interactions between the phases have only a small effect on
throughput or are not statistically significant. 45% of the varia-
tion in throughput is due to experimental errors.

For low TCP Vegas background traffic, 28% of the variation
can be explained with the modified algorithms during recovery,
followed by the changes during slow-start. 3% of the variation
can be explained with the changes during congestion avoidance.
The interactions between the different phases are again small or
not statistically significant. Nearly half of the variation is due to
experimental error.

The data for the high background traffic scenarios is given
in Table VII. In the case of TCP Reno background traffic, the
dominant effect is the changed behavior during recovery. All
other effects have only small influence and/or are statistically
not significant. Note that TCP Vegas’s new congestion avoid-
ance mechanism has a (small) negative effect on performance.
Experimental errors account for 1� 3 of the total variation.

The results for the high TCP Vegas background traffic sce-
nario look similar to those for the TCP Reno scenario, that is,
the changes during recovery explain most of the variation seen
in the experiments. Again, the effect of the modified behavior
during congestion avoidance is negative.

C. Results for retransmissions

Table VIII presents the influence of the three phases on
the amount of retransmitted data for low background traffic.
Both for TCP Reno and for TCP Vegas background traffic, the
changes in slow-start dominate, followed by the changes in con-
gestion avoidance. Note that the modifications in recovery and
the interactions between the modifications in slow-start and in
congestion avoidance increase the amount of retransmitted data.

In the case of high background traffic, as shown in Table IX,
the experimental error explains about 90% of the variation both
for TCP Reno and for TCP Vegas background traffic. Compared
to the experimental error, the effects of the individual phases on

TABLE VIII

R
�

ETRANSMISSIONS[KB] (LOW BACKGROUND TRAFFIC).

TCP Reno TCP Vegas
Effect Percentage Effect Percentage

q of variation q of variation

mean 29 02 32 75
ss � 10 74 43 12 � 12 43 54 91
ca � 8 65 27 97 � 6 38 14 48
rec 3 08 3 56 3 05 3 31
ssca 5 42 10 96 2 41 2 06
ss rec 0 32a 0 04 0 40a 0 06
ca rec � 1 98 1 47 � 1 53 0 83
ssca rec 0 43 0 07 0 25a 0 02
error 12 82 24 34
90% 0 38 0 54

aNot significant.

the number of retransmissions are negligible. This is not surpris-
ing as TCP Vegas (that is, the conglomerate of all algorithms)
does not seem to be not particularly successful in reducing the
number of retransmissions (compared to TCP Reno) in the case
of high background traffic in the first place (Table V).

D. Conclusions

D.1 Slow-start

For the low background traffic scenarios, the changes in slow-
start are important, especially if the background traffic is TCP
Reno. An inspection of the packet traces reveals that TCP Ve-
gas’s congestion-sensitive window update strategy is successful
in avoiding timeouts in the initial slow-start. TCP Reno’s faster
and unresponsive exponential opening of the congestion win-
dow in this phase may result in overshooting the available band-
width and loosing multiple segments. Such damage can then be
overcome only with a timeout. Since background traffic is low,
transfers are short (on the order of a few seconds). Therefore,
a timeout affects throughput severely. By sensing the incipient
(self-induced) congestion in slow-start, TCP Vegas can avoid
such timeouts and thus perform considerably better than TCP
Reno. The evaluation of a more detailed 27 experiment, where
each of algorithms (A)-(G) represents a factor, shows that con-
gestion detection in slow-start in fact has the largest positive ef-
fect on throughput of all the algorithms (it explains about 25%
of the variation), whereas the influence of the second change in
slow-start (initial window of two segments (G)) is negligible.
The problem of overshooting the available bandwidth in the ini-
tial slow-start has also been recognized by other researchers, and
since the release of TCP Vegas, a number of papers addressing
this problem have been published [15][3]. By reducing the like-
lihood of timeouts in slow-start, congestion detection also suc-
ceeds to reduce the number of retransmissions. The 27 exper-
iment shows that nearly 50% of the variation can be explained
with it. Interestingly, algorithm (G), which is responsible for
3% of the variation, increases the number of retransmissions.
Therefore, initializing the size of the congestion window to two
segments may be too aggressive.

TABLE IX

RETRANSMISSIONS[KB] (HIGH BACKGROUND TRAFFIC).

TCP Reno TCP Vegas
Effect Percentage Effect Percentage

q of variation q of variation

mean 120 84 144 02
ss 2 55 1 09 5 58 3 45
ca � 2 21 0 81 � 1 84a 0 37
rec � 4 79 3 83 � 6 31 4 41
ssca 1 41a 0 33 1 45a 0 23
ss rec � 3 24 1 75 � 3 22 1 14
ca rec 0 25a 0 01 � 0 24a 0 01
ssca rec 0 97a 0 16 � 0 26a 0 01
error 92 02 90 39
90% 1 52 1 85

aNot significant.

TABLE X

AVERAGE THROUGHPUT[KB/ S] (WAN SCENARIO).

Background traffic
Reno Vegas

Reno 15.2 14.7
Vegas 18.6 16.4

In the high background traffic scenario, the changes in slow-
start have virtually no effect. The discrepancy between the effec-
tiveness of these changes for the low and the high background
traffic scenarios is surprising and warrants a closer inspection.
For this purpose, we repeated our simulations for a WAN sce-
nario. The topology for the WAN scenario is identical to the
one described in Section IV-B; the delay of the bottleneck link
is 400ms, its bandwidth is 1.5Mbit/s, and the size of the router
queues is 50 segments. We simulate high background traffic
(with a connection inter-arrival time of 0.03s). Table X shows
the throughput achieved by TCP Reno and TCP Vegas in the
WAN scenario. We note that the performance improvements by
TCP Vegas are less pronounced (10–20%) than for the original
topology. Table XI lists the influence of the three phases and
their interactions on TCP Vegas’s throughput. It is interesting
to note that the changes in slow-start negatively affect through-
put. This observation implies that in cases with high background
traffic, TCP Vegas’s sensing of incipient congestion in slow-start
and switching to congestion avoidance is too conservative and
that the performance improvements (compared to TCP Reno)
must all be attributed to the changes in recovery (see below).
When examining the amount of retransmitted data for the WAN
scenario, we find that the slow-start changes do not help to de-
crease the number of retransmissions, either.

D.2 Recovery

The changes in recovery have the largest effect on throughput
(except for the case of low TCP Reno background traffic, where
the slow-start changes are slightly more effective). One may
suspect that TCP Vegas’s more aggressive fast retransmission

TABLE XI

THROUGHPUT[KB/ S] (WAN SCENARIO).

TCP Reno TCP Vegas
Effect Percentage Effect Percentage

q of variation q of variation

mean 17 96 16 26
ss � 2 87 12 31 � 1 54 4 61
ca � 0 19a 0 05 � 0 63 0 78
rec 4 80 34 29 3 25 20 53
ss ca 0 39 0 22 0 05a 0 00
ss rec � 1 74 4 52 � 0 90 1 59
ca rec 0 30a 0 13 0 16a 0 05
ss ca rec 0 01a 0 00 � 0 20a 0 08
error 48 48 72 36
90% 0 37 0 40

aNot significant.

policy (C) is mainly responsible for the gain in performance.
However, the evaluation of the 27 experiment reveals that in the
high background traffic case, reducing the congestion window
by only 1/4 (F) has the largest effect (about 28% for TCP Reno
background traffic and about 7% for Vegas background traffic),
followed by the retransmissions triggered by ACKs for new data
(D; Reno: 9%, Vegas: 2%). The influence of the more aggres-
sive fast retransmission policy (C) is even smaller (Reno: 3%,
Vegas: 2%). Algorithm (E), which avoids multiple reductions of
the congestion window in recovery, has no effect on throughput.

There are two reasons why algorithm (F) improves TCP Ve-
gas’s performance: First, shrinking the congestion window by
only 1/4 (instead of halving it) results in a larger congestion
window after recovery. Second, algorithm (F) alters the recov-
ery behavior8. By halving the congestion window, TCP Reno
must wait for about half an RTT until enough duplicate ACKs
have arrived to let the congestion window become larger than
the amount of data currently outstanding. On the other hand,
TCP Vegas must wait only for about 1/4 of an RTT. Even though
algorithm (F) results in considerable throughput improvements,
it may do so at the cost of other connections. For example, we
note that (F) explains 28% of the variation in case of high TCP
Reno background, but only 7% in case of high TCP Vegas back-
ground. This result seems to indicate that algorithm (F) allows
Vegas to grab a larger share of the bottleneck bandwidth. This
reasoning is supported by the observation that TCP Reno gen-
erally achieves lower throughput when running on TCP Vegas
background traffic (Table I). We find that TCP Reno indeed suf-
fers when competing with TCP Vegas background traffic and
that TCP Vegas is able to “steal” bandwidth from TCP Reno.
Since the changes in congestion recovery (and among those, al-
gorithm (F)) have the largest effect, they are mainly responsible
for this asymmetry (or unfairness).

Algorithm (D) helps to avoid timeouts due to multiple seg-
ment loss. As shown in [5], the majority of the timeouts in TCP

8After the fast retransmission, the congestion window is set to half of its previ-
ous size plus three segments. It is increased by one segment for every duplicate
acknowledgment. New data can be sent as soon as the size of the congestion
window is larger than the amount of outstanding data.

Reno are caused by multiple segment loss, therefore, changes
which help to reduce the number of such timeouts prove very
helpful. The results for TCP Vegas’s fast retransmission pol-
icy (C) support Jacobson’s argumentation [18] who claimed that
the new policy most likely results in only a negligible perfor-
mance gain. The fact that algorithm (E) has virtually no effect
on throughput indicates that the multiple segment loss situations
that cannot be remedied by algorithm (D) can hardly be survived
without incurring a timeout, most likely because the congestion
window is simply too small to allow for further fast retransmis-
sions to be triggered (in scenarios with high background traffic).

In summary, TCP Vegas’s techniques for congestion recovery
(in particular algorithm (D) that addresses problems related to
multiple segment loss) prove to be very effective and mainly re-
sponsible for the impressive performance gains over TCP Reno
observed. Although effective, algorithm (F) may be problem-
atic in terms of fairness. We note that TCP Reno’s deficiencies
in dealing with multiple segment loss have also been pointed out
by other researchers (e.g., [12][15]), and in recent years a num-
ber of solutions have been proposed that enhance TCP Reno’s
data and congestion recovery mechanisms to remedy these prob-
lems (e.g., SACK TCP [20], or “NewReno” TCP [13], etc.).

D.3 Congestion avoidance

Our experiments show that the probably most innovative fea-
ture of TCP Vegas, i.e., its congestion detection mechanism dur-
ing congestion avoidance, actually has the least influence. Its
influence is even negative in the high TCP Reno background
traffic scenario. Table XII summarizes these findings. It repeats
the results from Table IV and in addition shows the through-
put achieved by a version of TCP Vegas (Vegas w/oca) that
excludes the congestion detection mechanisms in congestion
avoidance9. These numbers suggest that the congestion avoid-
ance mechanism of TCP Vegas is only rather moderately effec-
tive. Furthermore, considering a version of TCP Vegas which
merely includes the novel congestion avoidance mechanisms
(Vegas onlyca), we see only a minor improvement over TCP
Reno for low background traffic loads and even lower through-
puts in situations with high background load.

One would expect TCP Vegas to perform better (than TCP
Reno) because of its congestion avoidance mechanism for the
following reason: TCP Vegas can proactively reduce the con-
gestion window by small amounts (a single segment at a time)
to avoid packet loss. A packet loss would result in a congestion
window reduction by a large amount. So, the expectation is that
(a number of) small rate reductions affects throughput less than
the rate-halvings after packet loss. However, we observe in this
paper (and other research supports these results [2] [5]) that this
hope is in vain. Thus, the empirical evidence indicates that TCP
Vegas’s congestion avoidance mechanism is too conservative.

As far as the impact on the amount of retransmitted data
is concerned, we find that TCP Vegas’s congestion detection
mechanism is quite successful. However, we also note that both
for low and high background traffic, other factors contribute
more to the reduction than this particular mechanism.

9Recall that TCP Vegas refers to the corrected version described in Sec-
tion VII.

TABLE XII

AVERAGE THROUGHPUT[KB/ S] PER CONNECTION.

Background traffic
low high

Reno Vegas Reno Vegas

Reno 73.4 71.8 16.1 13.0
Vegas 105.5 101.4 35.1 29.2
Vegas w/oca 99.3 94.6 35.5 28.0
Vegas onlyca 74.5 73.4 15.3 11.3

IX. PROBLEMS OF CONGESTION AVOIDANCE

As shown in Section VIII, the influence of TCP Vegas’s novel
congestion avoidance mechanisms on throughput is at best mod-
erate. This section shows that this mechanism may even exhibit
fairness problems.

A. Unfair treatment of “old” connections

In congestion avoidance, TCP Vegas begins to decrease the
congestion window when the following condition is met (β is
positive and usually set to 3; see Section VII-C for a definition
of terms): �

windowSize
baseRTT

� rttLen
rtt � � baseRTT� β

Assuming thatwindowSizeis equal torttLen, that is, the number
of segments in transit corresponds to the number of segments
sent during the last RTT (this assumption is valid when TCP
Vegas reaches equilibrium), the above condition is true for

windowSize� β
1 � baseRTT

rtt

Consider the scenario when a TCP Vegas connection is initi-
ated in an uncongested network. This connection’sbaseRTT1
is thus fairly close to the minimal RTT possible. If the network
becomes congested later on, the measured RTT (rtt1) increases
and thus the termbaseRTT1 � rtt1 decreases. (For our simula-
tion topology, we observed factors smaller than 0.5.) Now, as-
sume that a second connection is started. Since the network
is congested, the second connection’s estimate ofbaseRTT2 is
bigger thanbaseRTT1, so baseRTT2 � rtt2 is also bigger than
baseRTT1 � rtt1 (assuming thatrtt1 � rtt2). This implies that the
critical value ofwindowSize, which would trigger a reduction of
the congestion window size, is bigger for the second connection
than for the first connection. Therefore, the second connection
can achieve higher bandwidths than the first (“older”) connec-
tion.

Figure 2 illustrates this fairness problem of TCP Vegas’s con-
gestion avoidance mechanism. The graph shows the congestion
window sizes of five staggered connections. The connections
share a bottleneck and are started in one second intervals10. The
first connection reacts the most to the congestion caused by the
other connections, and in equilibrium, its congestion window

10The connections run over the topology shown in Section IV-B; on each side,
three hosts are added; the size of the router queues are set to 25 segments.

Fig. 2. Connections sharing bottleneck.

is the smallest. On the other hand, the connection started last
achieves the largest congestion window and thus gets the largest
share of the bottleneck bandwidth. (The size of the congestion
window of the second connection is identical to the one of the
first connection in equilibrium.) Note that the size of the con-
gestion window of the first connection att � 3s corresponds to
the size of the congestion window of the last connection during
equilibrium. However, whereas the first connection is forced to
reduce its congestion window att � 3s, later, the last connection
does not have to adjust its window size.

The algorithm that triggers the increase of the congestion win-
dow suffers from a similar problem. The congestion window is
increased when the following condition holds (α is usually set
to 1):

windowSize� α
1 � baseRTT

rtt

Since the term on the right side is bigger for a connection A, ini-
tiated in an congested network, than for a connection B, initiated
while the network was uncongested, the condition is more likely
to be fulfilled for type A connections than for type B connec-
tions. Again, this means that connections of type A can obtain
an unfair share of the link bandwidth.

Note that TCP Reno’s congestion avoidance strategy may not
guarantee fairness, either. However, since every connection suf-
fers some losses from time to time (due to self-induced packet
loss), there is at least a chance for other connections to catch
up. This may not be the case for TCP Vegas, since TCP Vegas
specifically tries to prevent the self-induced losses.

B. Persistent congestion

In addition to the problem discussed in Section IX-A, there
are concerns about TCP Vegas behavior in situations with per-
sistent congestion [11]. In such a situation, a TCP Vegas con-
nection overestimatesbaseRTTand although it believes that it
has betweenα andβ segments in transit, in fact, it has many
more segments in transit. A detailed description of the problem
is given in [21].

C. Discussion

There have been suggestions to overcome the problem de-
scribed in Sections IX-B by settingbaseRTTto a bigger value

in case of persistent congestion (e.g., [21]). The problem in
Section IX-A may be overcome in a similar way. Although re-
settingbaseRTTmay be an adequate measure in case of routing
changes, where the minimum RTT indeed may become larger,
it is not an adequate work-around for the two problem cases
described, sincebaseRTTis by definition “the RTT of a seg-
ment when the connection is not congested” [6][8]. So, setting
baseRTTto a bigger value than the minimum measured RTT vi-
olates this definition and compromises the congestion avoidance
mechanism’s theoretical foundation.

X. CONCLUSIONS

Our evaluation of TCP Vegas confirmed the results reported
by previous work [6][1] which showed that TCP Vegas can
achieve significantly higher throughputs than TCP Reno. In ad-
dition to previous work, our in-depth analysis of TCP Vegas al-
lows us to determine the effect of the various algorithms and
mechanisms proposed by the inventors of TCP Vegas on perfor-
mance.

Our experiment shows that TCP Vegas’s techniques for
slow-start and congestion recovery have the most influence on
throughput as they are able to avoid timeouts due to multiple
segment loss. Therefore, TCP Vegas seems to be quite success-
ful in overcoming a well-known problem of TCP Reno. How-
ever, TCP Vegas’s most innovative feature, that is, its congestion
detection mechanism during congestion avoidance, has only mi-
nor or even negative effect on throughput. Moreover, we found
that the congestion avoidance mechanism may exhibit problems
related to fairness among competing connections. As a conse-
quence, for a conclusive comparative evaluation of TCP Vegas
and TCP Reno, one must compare the effectiveness of Vegas’s
techniques for slow-start and congestion recovery to the effec-
tiveness of similar enhancements to TCP Reno. We limited the
discussion to a scenario that has been investigated by the devel-
opers of TCP Vegas; different scenarios may still deserve further
investigations.

Transport protocols such as TCP incorporate a number of
complex algorithms (e.g., for congestion control, data recovery,
etc.) whose effects on performance and whose interactions are
often not clearly understood. Our approach of a factor analy-
sis allowed us to shed some light on the effectiveness of various
algorithms of such a protocol and on the interactions of these
algorithms. We want to encourage future protocol developers to
decompose design and implementation early on to allow such
performance analysis and experimentation.

REFERENCES

[1] J. S. Ahn, P. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: Em-
ulation and Experiment. InProceedings of ACM SIGCOMM ’95, pages
185–195, August 1995.

[2] J.S. Ahn and P.B. Danzig. Packet Network Simulation: Speedup and Ac-
curacy Versus Timing Granularity.IEEE Transactions on Networking,
4(5):743–757, October 1996.

[3] M. Allman and V. Paxson. On Estimating End-to-End Network Path Prop-
erties. InProceedings of ACM SIGCOMM ’99, pages 263–274, August
1999.

[4] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP Congestion Con-
trol, April 1999.

[5] J. Bolliger, U. Hengartner, and T. Gross. The Effectiveness of End-to-
End Congestion Control Mechanisms. Technical Report 313, ETH Zürich,
February 1999.

[6] L. S. Brakmo, S. W. O’Malley, and L. Peterson. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance. InProc. of ACM SIG-
COMM ’94, pages 24–35, London, October 1994.

[7] L.S. Brakmo and L.L. Peterson. Performance Problems in BSD4.4 TCP.
Computer Communication Review, 25(5):69–86, Oct 1995.

[8] L.S. Brakmo and L.L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a global Internet.IEEE Journal on Selected Areas in Com-
munications, 13(8):1465–1480, Oct 1995.

[9] P.B. Danzig and S. Jamin. A Library of TCP Internetwork traffic Charac-
teristics. Technical Report 91-495, Computer Science Department, USC,
1991.

[10] P.B. Danzig, Z Liu, and L. Yan. An Evaluation of TCP Vegas by Live Em-
ulation. Technical Report 94-588, Computer Science Department, USC,
1994.

[11] S. Floyd. Re: TCP Vegas, April 1994. end2end-tf mailinglist.
[12] S. Floyd. TCP and Successive Fast Retransmits, February 1995.

ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.
[13] S. Floyd and T. Henderson. RFC 2582: The NewReno Modification to

TCP’s Fast Recovery Algorithm, April 1999.
[14] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of

Congestion Control Mechanisms of TCP. InProceedings of INFOCOM
’99, pages 1329–1336, March 1999.

[15] J. C. Hoe. Improving the Start-Up Behavior of a Congestion Control
Scheme for TCP. InProceedings of ACM SIGCOMM ’96, pages 270–
280, August 1996.

[16] N.C. Hutchinson and L.L. Peterson. Thex-Kernel: An Architecture for
Implementing Network Protocols.IEEE Transactions on Software Engi-
neering, 17(1):64–76, January 1991.

[17] V. Jacobson. Congestion Avoidance and Control. InProceedings of ACM
SIGCOMM 88, pages 314–329, August 1988.

[18] V. Jacobson. problems with Arizona’s vegas, March 1994. end2end-tf
mailinglist.

[19] R. Jain.The Art of Computer Systems Performance Analysis. John Wiley
& Sons, Inc., 1991.

[20] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP
Selective Acknowledgment Options, October 1996.

[21] J. Mo, R.J. La, V. Anantharam, and J. Walrand. Analysis and Comparison
of TCP Reno and Vegas. InProceedings of INFOCOM ’99, pages 1556–
1563, March 1999.

[22] Y. Zhang, E. Yan, and S.K. Dao. A Measurement of TCP over Long-Delay
Network. InProceedings of 6th Intl. Conf. on Telecommunication Systems,
pages 498–504, March 1998.

